Notation and conventions

We assume that a dependent quantity y can be expressed in terms of a linear function of a number of independent quantities x, i.e.
[image: image1.wmf]å

=

j

j

j

x

y

a

. Note that this expression does not allow for a constant term. However, this is not a loss of generality: it can be emulated by making one of the independent quantities, say x0, equal to 1 for all points in your dataset.
Linear regression algorithm

The algorithm used is the well-known least squares method. It determines the values of the model parameters (by minimising the quantity
[image: image2.wmf]å

÷

÷

ø

ö

ç

ç

è

æ

å

-

i

i

j

ij

j

i

x

y

w

a

2

 where the index i runs over all points in the dataset and wi is a weight factor for each datapoint. A special feature of the algorithm in linmodel.dll is that it allows linear constraints being imposed on the model parameters (:
[image: image3.wmf]å

=

j

j

j

c

d

a

. The algorithm has no restrictions on the number of datapoints, parameters or constraints. It has been implemented in such a way that it does not need any external routines, not even standard mathematical functions like “square root”. It is entirely written in terms of basic operations: addition, subtraction, multiplication and division, nothing else!
How to use the routines supplied in linmodel.dll

Two routines are available: lin_model which calculates the model parameters from a set of experimental data, and lin_predict which calculates the prediction of the model, using of course the parameters as calculated by lin_model.

The declarations of these two routines are given in the include file linmodel.h and a fully functional program using them is in lintest.cpp. This program has a very primitive user interface: it reads the data from a textfile containing numbers only.

Testing

I have tested the algorithm on a few standard datasets from the NIST website. These datasets are included in a format the sample program lintest.cpp can use. In all cases the certified outputs are reproduced to at least 10 significant digits and I am therefore convinced that the code in linmodel.dll is fully correct (and also very robust and efficient).

N.B. you may notice some differences for some of the statistical measures: this is because in lintest.cpp I only implemented the definitions for the case without a constant term.
_1122718410.unknown

_1122718435.unknown

_1122718156.unknown

